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Abstract
Modelling and simulation techniques are valuable tools for the understanding of complex biological systems.
The design of a computer model necessarily has many diverse inputs, such as information on the model topology,
reaction kinetics and experimental data, derived either from the literature, databases or direct experimental
investigation. In this review, we describe different data resources, standards and modelling and simulation tools
that are relevant to integrative systems biology.
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INTRODUCTION
For a long time, research in molecular biology has

been focused on the analysis of relevant components

of the cellular network (proteins, metabolites) in

isolation. By this approach, thousands of genes have

successfully been characterized and functionally

annotated. But biological systems are complex and

their characteristics are the result of a highly inter-

woven interaction network developing through time

and space. Fundamental characteristics of living sys-

tems, such as the assimilation of nutrients, growth

and reproduction, the perception of (environmental)

signals and its processing can be narrowed down

ultimately to the single unit that all living things are

composed of: the cell. Thus, the understanding of

the characteristics of cellular systems is essential, but

this requires an approach that takes into account both

interactions at the molecular level as well as physio-

logical functions that are characteristics of the whole

organism. In particular, in the light of understanding

multigenic and complex diseases that cannot be

pinned down to a single gene or component, systems

approaches become increasingly important.

Systems biology explanations of physiology and

disease should be multi-level; from molecular path-

ways and regulatory networks, through cells and

organs, ultimately to the level of the whole organism.

With the use of computer models for such processes,

insilico predictions can be generated on the state of the
disease or the effect of the individual therapy [1].

Models are partial representations and their aim is to

explain which features of a system are necessary and

sufficient to understand it [2]. The performance of a

model is mainly defined by its predictive power.

What is predicted depends on the task and of course

is general.

Systems biology is going to revolutionize our

knowledge of disease mechanisms and the interpreta-

tion of data from high-throughput technologies.

Biological systems can be studied by (i) investigating

the components of cellular networks and their inter-

actions, (ii) applying experimental high-throughput

and whole-genome techniques and (iii) integrating

computational methods with experimental efforts [3].

This approach requires an integration of experi-

mental and computational methods [4] and, thus,
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an iterative, integrated process of data mining and

data gathering (e.g. from scientific literature, databases

and experiments), data integration, computational

modelling and analysis and finally validation of

specific observations that were not explicit before-

hand (Figure 1).

Using data mining steps, one agglomerates

sufficient details for the generation of model proto-

types of the biological system under investigation.

Finally, using analysis methods, the mathematical

model is refined, cross-validated with regard to

internal and external features (for example using

parameter estimation and validation methods) and

being used for the formulation of new hypotheses

that in turn are subject to further experimental

investigation.

Systems biology methodology and approaches

have evolved rapidly over the past few years, driven

by emerging new high-throughput technologies.

The most important boost was given by the large

sequencing projects such as the human genome proj-

ect that resulted in the full sequence of the human

and other genomes [5, 6]. This knowledge builds the

theoretical basis to compute gene regulatory motifs,

to determine the exon–intron structure of genes and

to derive the coding sequence of potentially all genes

through many organisms. From the exact sequences,

probes for whole genome DNA arrays have been

constructed that allow monitoring of the transcript-

ome of a given cell- or tissue-type. Proteomics

technologies have been used to identify translation

status on a large scale (2D-gels, mass spectrometry).

Protein–protein interaction data involving thousands

of components have been measured to determine

information on the proteome [7]. Multiple databases

exist, a variety of experimental techniques have pro-

duced gene and proteome expression data from

various tissues and samples and important disease-

relevant pathways have been investigated. Informa-

tion on promoter regions and transcription factors is

available for many genes as well as sequence infor-

mation. This information—although extremely help-

ful—cannot be utilized efficiently, because of the lack

of integrative analysis tools.

To validate such data in the system-wide hier-

archical context ranging from DNA to RNA to

protein to interaction networks and further on to

cells, one needs to correlate and integrate such infor-

mation. Thus, an important part of systems biology

is data integration.

In this work, we review key genomic and

computational resources available for systems biology

approaches. The first part of our review is devoted to

databases and public repositories that store functional

high-throughput data, for example, gene expression

data, sequences, disease information, annotation of

protein function and biological pathways. Creating a

fundamental knowledgebase is the first essential step

in the development of computer models for cellular

processes and these data repositories can be used in

order to derive the ‘parts list’ of the biological process

under study. By combining these data and by adding

functional relationships they deliver an initial

topology (or reaction network) that is the basis for

dynamic modelling.

In the second part of this review, we describe some

important standards for exchanging relevant data.

Experimental investigation in functional genomics

and proteomics, e.g. of disease processes, typically

involves several steps of experimental testing using

heterogeneous data techniques. The integration of

those data requires common schema for data storage,

data representation and data transfer. For particular

experimental techniques (e.g. in transcriptome and

proteome research), such schema has already been

established. On a more complex level, schema has

also been defined for biological models and pathways

such as SBML [8, 9], CellML [10] and BioPAX. Most

of these repositories use an XML-based language

style.

In the third part of the review, we introduce state-

of-the-art tools for dynamic computational model-

ling. For dynamical modelling, common approaches

are based on systems of ordinary differential equations

Figure 1: Modelling biological systems.
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(ODEs) that describe biochemical reaction networks.

Other possible deterministic approaches are e.g.

neural networks, cellular automatons, Boolean or

Petri nets [11, 12]. Computer tools allow the analysis

of the dynamic behaviour of the reaction networks

with the given model parameters. It is a very

important feature of such systems to allow the

estimation of these parameters from experimental

data and the analysis of the behaviour of the system

with respect to changes of these parameters. We give

an overview on the features of several tools and

highlight results from the PyBioS system developed

in our laboratory.

DATA RESOURCES FOR SYSTEMS
BIOLOGY
The development of mathematical models of cellular

systems requires a lot of information on different

aspects of the system. Data typically arises from

several levels of cellular information quantified by

different functional genomics technologies such as

DNA, RNA or protein sequence data, gene expres-

sion data from array experiments, abundance data of

proteins and metabolites from diverse experimental

techniques (e.g. mass spectrometry, 2D-gels, blots),

information on protein–protein interactions or

protein modifications or kinetics of enzyme activities

or binding affinities, among others. The most

important resource for such information is the

scientific literature and human expertise curated in

public databases. In particular, for the development

of mathematical models standardized resources that

provide their data in a computational amenable and

reusable manner are a preferable resource. Table 1

gives a brief list of some important databases. A large

compilation of relevant database resources is given in

[13]. Moreover, Nucleic Acids Research offers a yearly

database issue in January, providing a broad overview

of diverse databases.

Primary data resources
The National Center for Biotechnology Information

(NCBI) [14] and the European Bioinformatics

Institute (EMBL-EBI) [15] provide several databases

that are widely used in biological research offering

information about nucleotide sequences, proteins,

genes, molecular structures and gene expression.

Among the nucleotide sequence databases, the

Genetic Sequence database (GenBank), the Refer-

ence Sequence Database (RefSeq) and UniGene can

be found at the NCBI. Related databases at the

EMBL-EBI are the EMBL Nucleotide Database or

the Ensembl automatic genome annotation database.

The Ensembl project is developing and maintaining

a system for the management and presentation of

genomic sequences and annotation for eukaryotic

genomes [16–19]. Similarly to nucleotide sequence

Table 1: Selected data resources and databases for systems biology

Data resource URL References

Ontology
GO http://www.geneontology.org/ [71]
Pathway databases
KEGG http://www.genome.jp/kegg/ [31]
Reactome http://www.reactome.org/ [32]
BioCyc (including EcoCyc, MetaCyc, HumanCyc) http://www.biocyc.org/ [33]
Pathway Interaction Database (PID) http://pid.nci.nih.gov/
BioCarta http://www.biocarta.com/
Spike http://www.cs.tau.ac.il/�spike/
IntAct http://www.ebi.ac.uk/intact/ [40]
Database of interacting proteins (DIP) http://dip.doe-mbi.ucla.edu/ [41]
Kinetics databases
BRENDA http://www.brenda.uni-koeln.de/ [46]
SABIO-RK http://sabio.villa-bosch.de/SABIORK/ [47]
Expression data resources
Gene Expression Omnibus (GEO) http://www.ncbi.nlm.nih.gov/projects/geo/ [27, 28]
ArrayExpress http://www.ebi.ac.uk/arrayexpress/index.html [29]
Disease specific databases
OMIM http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db¼OMIM
Systems biology model repositories
BioModels http://www.biomodels.org/ [48]
JWS http://jjj.biochem.sun.ac.za/ [49]
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databases, Swiss-Prot, TrEMBL [20] and UniProt

[21], provide information on protein sequences and

annotations. Moreover, there are databases for

protein families, domains and functional groups

such as InterPro [22, 23] or those with a focus on

protein structures like Protein Data Bank (PDB) [24].

Since a few years, also non-translated RNAs and

microRNAs revealed to be highly important in the

control of cellular systems and gave rise to the

implementation of related databases, like RNAdb

[25] or miRBase [26], with the objective of gather-

ing current information. Microarray data provide

a valuable resource in the interpretation of the

transcriptome levels of genes. Large repositories store

these data from multiple studies such as the Gene

Expression Omnibus (GEO) [27, 28] at NCBI and

the ArrayExpress [29] at EMBL-EBI. These databases

provide free distribution and shared access to

comprehensive gene expression datasets. Data

include single and multiple channel microarray-

based experiments measuring the abundance of

mRNA, genomic DNA and protein molecules.

Data from non-array-based high-throughput func-

tional genomics and proteomics technologies are also

archived, including SAGE and mass spectrometry

peptide profiling.

Pathway and interaction databases
Pathway databases are particularly interesting for

modelling approaches, since they offer a straightfor-

ward way of building network topologies by the

annotated reaction systems [30]. These databases pro-

vide integrated representations of functional knowl-

edge of the different components of a biological

system and constitute a basis for the topology of

mathematical models. The databases Kyoto Encyclo-

pedia of Genes and Genomes (KEGG) [31],

Reactome [32] and BioCyc [33] contain metabolic

reactions and several signal transduction pathways.

KEGG is a reference knowledgebase offering infor-

mation about genes and proteins, biochemical com-

pounds, reactions and pathways. It provides 317

reference pathways that are linked to genes and

reactions of 38 eukaryotes and many microorganisms.

It can be accessed via the web, FTP and web services.

Reactome [32] is managed as a collaboration of the

Cold Spring Harbor Laboratory, the EBI and the

Gene Ontology Consortium. It uses a very precise

specification (ontology) of components and interac-

tions that comprises details on stoichiometry, local-

ization, references to external databases, etc. This

covers also processes like complex formation events

or translocations of molecules. A further pathway

database with a similar scope is BioCyc [33] that

covers pathway data on Escherichia coli (EcoCyc), and
predicted metabolic pathways of other microorgan-

isms (MetaCyc) and human (HumanCyc). Databases

with a specific focus on signalling events are BioCarta

[34], Spike [35], Transpath [36], STKE [37],

NetPath [38] and the Pathway Interaction Database

(PID) [39]. An inherent aspect of the pathway

concept is protein–protein interaction subject of the

databases IntAct [40] or database of interacting pro-

teins (DIP) [41]. Gene regulation processes and gene

regulatory networks are not yet covered in as much

detail as metabolic processes or signalling. However,

there are databases that store information on tran-

scription factor binding sites such as RegulonDB [42],

TRED [43] and Transfac [44]. The lack of uniform

data models and data access methods of the existing

almost 224 interactions and pathway databases make

data integration very difficult [30, 45]. Table 2

illustrates the overlap of several of these pathway

resources in human.

Table 2: Numbers of overlapping reactions/interactions from different pathway databases that can be mapped to
each other in respect of identical substrates and products

Reactome KEGG HumanCyc PID Biocarta Intact Dip Spike

Reactome 12 042
KEGG 209 1498
HumanCyc 93 199 1077
PID 8 0 0 1064
Biocarta 62 0 1 114 2160
Intact 78 0 1 0 42 5690
Dip 15 0 2 0 25 114 1152
Spike 55 0 0 50 125 976 114 11181
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Besides topological information about cellular

reaction networks, kinetic data, such as kinetic laws

and kinetic constants, are of particular interest for the

generation of mathematical models. Two databases

that are concerned with such data are BRENDA [46]

and SABIO-RK [47].

Mathematical models of a biochemical reaction

system have been made available to the scientific

community in form of publications often depicting a

diagram of the reaction system or a list of the reaction

equations, along with a mathematical description

(e.g. as a differential equation system), and lists of

kinetic parameters and concentrations of specific

states. Recently, model databases have been installed

such as the BioModels database [48] or JWS [49].

Both are public, centralized databases of curated,

published, quantitative kinetic models of biochemical

and cellular systems. For instance, the BioModels

database currently provides 87 curated and 40 non-

curated models.

Theme-specific databases
Whereas most of the above-mentioned databases are

fairly general, there exist multiple databases with a

specific focus. For instance, there are databases that

are focused on a certain species, for example MGD

for mouse [50], Flybase for Drosophila melanogaster
[51], wormbase for Caenorhabditis elegans [52] or

SGD for yeast [53], or they contain information

on specific diseases, such as cancer (e.g. COSMIC

[54]) and diabetes (e.g. T1DBase [55]), or they

contain information on a specific subject such as

chemical compounds found in biological systems

(ChEBI [56], the Human metabolome database [57],

PRIDE [58], LipidMaps [59], the Human serum

metabolome project [60]).

Mining literature for systems biology
Finally, the integration of literature information is

highly important. Literature is accessed in a derived

form such as the concepts represented by the

Medical Subject Headings (MeSH) and Gene

Ontologies (GO). A further approach that is recently

applied for building systems biology resources is text

mining [61]. Text mining can either be used for pre-

selection of appropriate literature or the automatic

extraction of data from literature. In particular,

systems biology can benefit significantly from the

extraction of data on molecular interactions of

cellular components and related information about

the kinetics of the interactions [62]. However,

text mining of scientific literature is still in its early

phase and the precision of its results, as given by

false-positive and false-negative rates, has to be

improved. For further review on literature mining

see [63–65].

STANDARDSUSED IN SYSTEMS
BIOLOGY
An important part of systems biology is data

integration. Although data integration itself cannot

explain the dynamical behaviour of biological

systems, it is useful for increasing the information

content of the individual experimental observation,

enhancing the quality of the data and identifying

relevant components in the model. On the basic

level of complexity data integration consists of the

integration of heterogeneous data resources and

databases with the aim of parsing data from these

databases, to query for information and to make it

usable for modelling. Technically, database integra-

tion requires the definition of data-exchange proto-

cols and languages and the development of parsers

that interconnect the databases to a data layer that is

able to display the heterogeneous data sources in a

unified way.

A standard for representation, storage and ex-

change of data is a convention about the information

items necessary to describe the experiment and the

encoding of this information (e.g. expression data of

microarray experiments or information about the

relations between components and interactions of a

pathway). The standard has to enable an unambiguous

transfer and interpretation of the data and informa-

tion. Developing a standard involves four steps: an

informal design of a conceptual model, a formaliza-

tion, the development of a data exchange format and

the implementation of supporting tools [66].

Conceptual design
The first step, the conceptual model design, gives

an informal description of the related domain and

specifies its delimitation. The description should

address the minimal number of most informative

parameters but should still provide a common

ground for all related applications [66]. For instance,

for the microarray domain a conceptualization is

provided by Minimum Information about a Micro-

array Experiment (MIAME) [67] and Minimum
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Information about a Proteomics Experiment

(MIAPE) [68] which gives guidelines for the stan-

dardized collection, integration, storage and dissem-

ination of proteomics data. Like specifications for

experimental data also concepts for the description of

mathematical models such as Minimum Information

Requested in the Annotation of Biochemical Models

(MIRIAM) [69] have been elaborated.

Data representation formalisms and
languages
The description of a given domain can be repre-

sented in any format, but the use of common

representation formalisms and languages makes it

easier to compare and interpret data from similar

domains and it facilitates the integration, computa-

tional processing and comprehensive interpretation

of that data. Controlled vocabularies are a prerequi-

site for a consistent data description. They contain

sets of words or phrases representing particular

entities, processes or abstract concepts [70]. Within

a particular controlled vocabulary, individual terms

are usually associated with a unique identifier,

an unambiguous definition and occasionally also

synonyms to prevent misinterpretations.

Furthermore, ontologies are used for conceptu-

alization of a knowledge domain. An Ontology

defines terms and relations along with a vocabulary of

a topic area and thus, provides a common termino-

logy over a certain domain. Relations are, for

example, ‘is-a’ relations that describe a generalization,

forming a term hierarchy. An example is the GO that

builds the basis for a generalized functional annota-

tion of genes and their products. The naming of genes

and gene products is not necessarily systematic and

genes having identical functions are given different

names in different organisms or the verbal description

of location and function might be different. To

address this problem the GO was initiated as a

collaborative effort [71]. GO terms have a parent–

child relationship. GO defines three top-level

categories, ‘molecular function’, ‘biological process’

and ‘cellular component’ and organizes all keywords

in a hierarchical graph-like structure. The terms

defined in GO form a directed acyclic graph.

The power of the GO project lies in the fact that

many applications have been developed that use

GO terms to validate other data for functional

information.

Data exchange formats
During the last years, the eXtensible Markup

Language (XML) [72] has been proofed to be a

flexible tool for the definition of standard formats not

only for applications in different fields of information

technology, but also for the management of data

from diverse experimental platforms. One example

designed for data from microarray experiments is

MAGE-ML [73]. Others are, for instance, those

dealing with pathway data and mathematical models.

Table 3 gives an overview of some XML-based data

exchange formats used in systems biology. SBML

[8, 9], CellML [10] and BioPAX [74] have the

potential to become de facto standards for their

respective application area.

BioPAX is defined by the BioPAX working

group and is designed for handling information on

pathways and topologies of biochemical reaction

networks. The Systems Biology Markup Language

(SBML) is a format for ‘describing models common

to research in many areas of computational biol-

ogy, including cell-signalling pathways, metabolic

Table 3: Examples of XML-based standards used in systems biology

Modelling system Description Application area References

BioPAX Biological Pathways Exchange Description and exchange of
biological pathway data

[74]

SBML Systems Biology Markup Language Describing and exchange of
mathematical models

[8, 9]

SBGN Systems Biology Graphical Notation Visual notation for computational
models of biological systems

[96]

CellML Cell Markup Language Describing and exchange of
mathematical models

[10]

PSI-MI Proteomics Standards Initiative
Molecular Interaction

Description and exchange of
protein-protein interactions

[97]
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pathways, gene regulation and others’ [8, 9]. Major

releases of the SBML standard are called levels,

where level 2 is the most recent. SBML defines list of

species (entities of the model), compartments,

parameters and reactions, among others. SBML is

widely used—it is supported by over 110 software

systems.

A comparison of SBML and BioPAX comes to

the conclusion that, while the main structures of

these formats are similar, SBML is tuned towards

simulation models of molecular pathways. BioPAX

turns out to be the most general and expressive

format [75], even if it is lacking definitions for the

representation of dynamic data such as kinetic laws

and parameters.

It is argued that the syntactic and document-

centric XML cannot achieve the level of interoper-

ability required by the highly dynamic and integrated

bioinformatics applications. Therefore, semantic web

technology like resource-description framework

(RDF) and the web ontology language (OWL)

have been proposed as alternatives to current XML

technology [76].

Using standards brings several advantages, e.g. an

ontology along with a defined vocabulary is used that

promotes an accurate description of the data and it

provides a software-independent common represen-

tation of the data. One of the most important general

problems in building standards for biology is that our

understanding of living systems is not static but rather

constantly developing what necessitates a regular

update of these standards [66].

MODELLINGTOOLS
Annotation tools
The first step in setting up a model is by summarizing

in the computer, all reactions, interactions and

processes that are relevant to the model, either as a

list of reactions or as a diagram that is describing

those processes and depicts the network structure.

There are several software tools that can be used

for this purpose, for example JDesigner [77] or the

graphical and user-friendly interface of the

CellDesigner software [78]. Another software that

has a sophisticated graphical user interface and

supports BioPAX for model exchange is Cytoscape

[79]. A more advanced but comprehensive tool for

annotation is the Reactome Curator Tool that can

take advantage of the already existing data provided

by a local copy of the Reactome MySQL database.

Reaction systems designed by this tool have to be

converted into appropriate interchange formats, like

SBML or BioPAX.

Modelling tools
Once the model topology is designed, a mathemat-

ical model can be created. If this is, for example, a

kinetic model, further data on the kinetic laws and

kinetic parameters has to be identified or appropriate

assumptions have to be made. For this purpose,

diverse software tools have been developed. One can

use commercial tools like Mathematica or Matlab

that are well elaborated and offer broad spectra of

functionalities. One disadvantage of using these

programs is that the differential equation system of

the mathematical model has to be formulated

explicitly by the user. Overviews of current software

platforms and projects that face up to this as well as

an overview about computational requirements for

this purpose is given in [3, 80, 81]. Common systems

among others—for this purpose are Gepasi [82–84],

COPASI [85], E-Cell [86, 87], ProMoT/Diva [88],

Virtual Cell [89–91] or the Systems Biology

Workbench (SBW) and its add-ons [92]. Table 4

summarizes some modelling and visualization tools

for systems biology. A comprehensive list of model-

ling and simulation tools is also given in [93]

that reports the results of an online survey of

systems biology standards. This report identified

CellDesigner [78] as the most popular stand-alone

application in respect to its graphical functionalities.

Table 4: Selected modelling and simulation tools for
systems biology

Modelling system References

General ModellingTools
GEPASI [82^84]
CellDesigner [78]
E-Cell [86, 87]
ProMoT/Diva [88]
Virtual Cell [89^91]
Systems Biology Workbench (SBW) and its add-ons [92]
COPASI [85]
PyBioS [3, 95]
Model VisualizationTools
BioTapestry [98]
Cytoscape [99]
VisANT [100]

246 Wierling et al.



Gepasi and COPASI come up with user-friendly

interfaces for the simulation and analysis of bio-

chemical systems. They support the definition of

compartments. Common kinetic types as well as

user-defined kinetic types are available. They

provide time-course simulation and steady-state

calculation and the ability to explore the behaviour

of the model over a wide range of parameter

values using a parameter scan that runs one

simulation for each parameter combination. Gepasi

and COPASI can characterize steady states using

metabolic control analysis (MCA) and linear

stability analysis and they are capable of doing

parameter estimation with experimental data and

optimization.

E-Cell is based on the modelling theory of the

object-oriented Substance–Reactor Model. Models

are constructed with three object classes, substance,

reactor and system. Substances represent state-

variables, reactors describe operations on state

variables and systems represent logical or physical

compartments. Time-course calculation is done by

the use of a simulation engine. Numerical integra-

tion is supported by first-order Euler or fourth-order

Runge–Kutta method.

ProMoT/Diva consists of the modelling tool

ProMoT and the simulation environment Diva. The

workbench deals with modular models and can

handle Differential Algebraic Equation (DAE) sys-

tems. Modelling is supported with a graphical user

interface and a modelling language. The modelling

tool provides the possibility to use existing modelling

entities out of knowledge bases.

The Virtual Cell is a web-based client-server

architecture with central databases of user models.

It provides a formal framework for modelling

biochemical, electrophysiological and transport

phenomena while considering the sub-cellular

localization of the molecules that take part in

them [91].

The SBW provides a server that acts as a

broker between different modelling and simu-

lation tools (clients) via a common interface. These

clients (add-ons) cover graphical tools for model

population, deterministic and stochastic simulators

and analysis tools like the integration of MetaTool

[94]. Closely related to the SBW is the development

of SBML that is used for communication by SBW.

A modelling and simulation platform for

systems biology that is developed in our laboratory

is PyBioS [3, 95]. PyBioS has a web-based user

interface and provides functionalities for the model

development, simulation and analysis (Figure 2).

Compared to other systems biology modelling

and simulation tools PyBioS provides interfaces to

external pathway data resources that can be searched

and directly be used for the generation of the model

topology in mind. The system can handle large

ODEs with thousands of reactions. Furthermore,

PyBioS provides an interface for the upload of

experimental data that can directly be used as

initial values for model components such as

mRNA, protein, metabolite or enzyme abundances.

Appropriate kinetics can be chosen from a repos-

itory of pre-defined kinetic laws. From this informa-

tion—the model topology and the reaction kinetics

along with the respective parameters—PyBioS

automatically creates a mathematical model that

can be used subsequently for simulation and analysis.

Besides plotting graphs of time-course data (con-

centrations or fluxes versus time), PyBioS also

provides a visualization of the interaction network

graph comprising coloured nodes according to

simulation results. The latter is very helpful for the

interpretation of simulation results with respect to

the network structure. For the creation of a first

model prototype, PyBioS has an interface to external

pathway databases, such as Reactome, that can be

used for the automatic generation of a model

based on the respective network topology. Via

the web-interface one can search for specific

reactions or pathways and by this enrich the model

automatically with reactions from pathway databases

(Figure 3).

SUMMARYAND FUTURENEEDS
The new functional genomics techniques will

elevate our knowledge on biological networks to a

great extent. Systems biology will play a key role in

future research in the interpretation of such data.

The information that we can gain about a biological

system (for example a disease process) appears in

practice as an experimental observation, and research

is restricted to the granularity and the precision of

the experimental techniques in use. It is very

likely that the range of experimental granularity

will increase in the next years utilizing heteroge-

neous techniques that target a biological question of

interest at different points so that data integration
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remains a major challenge of future biomedical

research.

In the case of complex disease conditions, it is

clear that such integrated approaches are required in

order to link clinical, genetic, behavioural and

environmental data with diverse types of molecular

phenotype information and to identify correlative

associations. Such correlations, if found, are the key

to identifying biomarkers and processes that are

either causative or indicative of the disease.
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Key Points
� Studying cellular processes involves large amounts of heteroge-

neous data.
� Systems biology approaches try to assemble these data in a uni-

fiedway and combine itwithmethods from computationalmod-
elling and bioinformatics.

� Systemsbiology approaches try to develop computermodels for
the cellular processes, trained with the experimental data that
are able to reproduce fundamental features of these processes.

� Systems biology is in its early stages and needs data integration
and standardization.

Figure 2: The PyBioS simulation environment. A particular model can be selected from the model repository
(A) and its hierarchical model structure can be inspected (B). A graphical representation of the model is provided by
an automatically generated network diagram (C). An overview of all reactions of a model is given by an appropriate
listing (D). Simulation is based on an automatically generatedmathematicalmodel that is derived from its correspond-
ing object-orientedmodel. Simulation results can be depicted either as graphs of the concentration time course data
(E) or as coloured nodes in the network graph.Reaction kinetics can be displayed in a user friendlymanner (F).
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